As wind turbine blades grow longer to further reduce LCOE and meet the increasing need for green energy, the importance of high-performance rotor designs with optimized and well-defined structural blade properties becomes crucial. In current blade …
The last few decades have seen a significant growth in wind turbine size and capacity. Due to larger rotors, blades experience higher loads and larger load fluctuations due to wind shear and turbulence. Reducing these extreme and fatigue loads of …
In this paper we present a study to explore the design space of aero-structural performance of extreme-scale wind turbine blades. Traditionally, aerodynamics of the wind turbine blades has driven the design of the blade, but with blades reaching …
This paper discusses the design, manufacturing, and planned testing of a scaled demonstrator turbine as part of the Segmented Ultralight Morphing Rotor (SUMR) project funded by the Advanced Project Research Agency-Energy. The scaled demonstrator …
With the increase in demand for and reduction in costs of clean energy, wind turbines offer a very promising solution. However, to make offshore wind energy one of the preferred sources of clean energy, there is a need to bring down the levelized …
This paper presents the structural design of a 21-meter 1/5th scale SUMR demonstrator (SUMR-D) blade, which was designed to replicate the full-scale behavior of a 104-meter SUMR13 initial blade rated at 13.2 MW. This is a challenging structural …